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LETTER TO THE EDITOR 

Critical behaviour of two interacting linear polymer chains: 
exact res& for a state of interpenetration of 
chains on a fractal lattice 

Sanjay Kumar? and Yashwant Singh 
Department of Physics, Banaras Hindu University, Varanasi-221005, India 

Abslxaet. A model of two interacting (chemically'different) linear polymer chains on a 
fractal lattice is proposed. to study segregation and interpenetration of chains. Using the 
real space renomabation group transformation, the value of the contact exponent at the 
point of the interpenetration transition is calculated exactly for the 2~ Sierpinski gasket. 

Received 14 June 1993 

The physical properties observable on a polymer chain length are calculated as statistical 
averages over all possible configurations of the polymer, and these configurations are 
obtained by considering the chain as a walk embedded in an, appropriate lattice. Several 
lattice models such as random walk (RW), self-avoiding walk (SAW), true self avoiding 
walk (TSAW) [l-31, self-attracting self-avoiding walk (SASAW) [4], trails and their sil- 
houettes [5] etc have been proposed to represent a polymer chain in different regimes. 
All configurational properties of the polymer on a lattice are deduced from the generat- 
ing function 

G(x, T)= C Q(N, R ) P 2  
N,P 

where Q(N, R) is the number of different configurations per'site of a polymer having 
N monomers and R nearest neighbours. Here x is the fugacity associated with each 
step of the walk and the interaction- strength U is related' to temperature T by U =  
exp(Elkpr), E>O being the attractive energy asscciated with a pair of nearest neigh- 
bour bonds. 

The analogy with critical phenomena [Z] allows us to study the issue of universality 
in polymer statistics in a renormalization group framework. Moreover, if we restrict 
ourselves to the case of fractal hierarchical lattices, exact solutions of the renormaliza- 
tion group may be worked out and the singular behaviour of the generating functions 
may be analysed in detail [&SI. These lattices, like the Sierpinski gasket [8] or truncated 
n-simplex lattices [6] ,  are defined recursively, and, by splitting the generating functions 
in a finite subset of partial contributions, it is possible to write a closed set of recursion 
equations in terms of a finite number of coupling constants The variables in this set 
of equations are just the partial generating functions corresponding to different polymer 
configurations for a given size of the fractal lattice. Linearizing the recursion equations 
near the non-trivial fixed points one can find the eigenvalues of the transformation 
matrix which give the characteristic exponents of the system. 
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In this letter we study the critical behaviour of a system consisting of two chemically 
different polymer chains denoted as PI and Pz. This system has received considerable 
experimental and theoretical attention in recent years [9-141. The problem with which 
we are basically concerned here is to predict the effect of interactions between the 
monomers of PI and P2 on their coniigurations leading to interpenetration or zipping 
of the chains. It is generally thought that under certain conditions, polymer chains may 
form a self-similar interpenetrated coniignration. With rise in temperature the polymer 
system may transform to a state where the two chains are segregated from each other. 
We refer to this transformation as an unbinding transition (in analogy with the surface 
unbinding transition 1151). The temperature at which the unbinding transition takes 
place, corresponds to a tri-critical point and in its proximity a crossover regime may 
be observed. The mean number of monomers M of one polymer in contact with the 
other polymer at the tri-critical point is assumed to behave as 

MCCW 
,where N is total number of monomers in the longer chain and y is a contact exponent. 

To calculate the exponent y we employ an exact renormaling-group (RG) calcula- 
tion for a model on a fractal lattice.. For this we consider a Sierpinski gasket in d=2 
or equivalently a truncated 3-simplex lattice. We want to study the statistics of two 
interacting walks on this gasket subject to a number of restrictions. Let each walk be 
a self-avoiding walk (SAW). The different walks are allowed to cross each other at most 
once at any lattice point. A lattice bond may be occupied either by a step of one or by 
both walks. With each crossing we may associate contact energy E.. 

The generating function of interest can therefore be written as 

where Nl(Nz)  is the number of monomers in the polymer PI(P2) and xl(x~) denotes 
the fugacity weight factor attached to each step of the polymer Pl(P2) .  R, is the total 
number of sites visited by both the walks and Rz is the number of pairs of sites adjacent 
to these doubly visited sites. Here o=exp(E,/T), and t=exp(E,/T), where Eo, as 
mentioned above, is the contact energy and Et is the energy associated with an nnoccup- 
ied lattice bond adjacent to the doubly visited site. 

The average length of a chain, say PI, is found from the relation [I61 

If we allow tie two chains to cross each other on the lattice sites, then the mean number 
of monomers in direct contact (crossing) with other chain is defined as 

a ln G (M>=u - 
a m  (3) 

where ( M )  is the number of monomers of one chain in contact with the other. 
To calculate G we require a closed set of recursion relations involving four restricted 

partition functions s h o p  in figure I. For this case the recursion relations are simple 
and can be written as 

A,+ I =A2+ AS (4) 
B,+ 1 = Bz + P (5) 
c,, I = cZ+ + D'(A + B) (6) 
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C,+1 O r + l  - 
Figure 1. Diagrams representing the four restricted generating functions for two chains 
(indicated by smooth (P,) and wiggle (PJ lines) on a ZD Sierpinski gasket. 

and 

D,+1 = D ( A .  B+  A .  C+ B .  C) +D3.  (7) 
The s u f i  I in the RHS of the above equations is dropped for notational simpli6cation. 
It should be noted that recursion relation for A(B) is independent of B(A), C and D. 
This is because we ignored, for simplification, the effect of one SAW on the self-avoidance 
of the other SAW. In a dilute solution, the size of a chain is, however, not expected to 
change due to interactions between monomers of different chains [12]. The effects of 
interaction between two chains are taken through C and D. The critical exponents of 
the individual chains remain as in the dilute case [6]. The starting weight for these 
walks are 

A o = x l  ( 8 4  

Bo = xz (86) 

co=x,x*oz (8d 

Do = xlxztw. ( 8 4  

In the asymptotic limit both NI  and Nz tend to infinity, and therefore, in that 
situation x, = xz . Thus, A,+ 1 = B,+ I . For this case we find three non-trivial k e d  points 
whose features are discussed below. 

(i) The fixed point (A’=B*, c*, D*)=(O.61803,0,0) corresponds to the bulk 
segregated state. Linearization around this fixed point gives one eigenvalue greater than 
one, &, =2.3819 which gives the radius of gyration exponent v=O.7986 as obtained by 
Dhar [6] .  For x=xc(o)=O.618O3 this fixed point is reached for all values of o<o,(f). 

(ii) The ked  point (A*=B*, c*, D*)=(O, 0.61803,O) is reached for all o >o,(t) 
and x<x. (o) .  This represents interpenetration of chains which may be thought in some 
appropriate sense to be similar to the formation of the ‘double helix’ kind of structure 
of DNA molecules. Linearization around this fixed point yields one eigenvalue greater 
than one, &=2.3819, with v=O.7986. Here it should be noted that in this case the 

and 
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Figure 2. Critical fugacity x as a function of the interaction parameter o for several values 
of I for the 2~ Sierpenski gasket. The tri-critical points of adsorption are shown by solid 
circles. 

monomers of two different chains aie zipped together to form a single composite chain. 
(iii) At w = w,( t ) ,  x.(w) is still equal to its bulk value. We find the fixed point (A*= 

B*=0.61803,0.38196,0.38196). The relation for A,@,) depends only on x, so one has 

(X.-X,)-(aLr(xc-X) 

while the variation of o is, dominated by the eigenvector associated with the second 
largest eigenvalue at (A*=B*, c*, D*): 

(o7- 03 - ( W Y w  - ad with &= 1.9159. 

We identify this fixed point as the’tri-critical point which gives the contact exponent 

Y=ln- In ‘-0.7491. (9) 

In figure 2 we plot the phase diagram in the parameter space of x and w for a wide 
range of t .  We note that for each value of o such that o>w, ( t ) ,  an interpenetrated 
phase is found to occur for x<x,. As f increases w,(t) decreases as shown in figure 3. 
‘It thus appears that to have an unbinding transition, one of the interactions should be 
repulsive. 

The existence of chain confcgurations in a state of interpenetration and the occur- 
rence of an unbinding transition for this simple model of two SAWS on a 3-simplex 
lattice (or on a zD-Sierpinski gasket) is a pleasant surprise. We also note that the two 
6xedpoints (A*=B*, C?, D*) = (0, 0 , l )  and (0,0.61803,1) ofequations (4)-(7) cannot 
be reached starting with the initial condition given by equations (8a)-(8d). The existence 
of such states, which correspond to a configuration represented by D in figure 1, has 
not been found experimentally. 

It, therefore, seems that the simple model proposed here provides a qualitative 
description of the phase transition between segregation and interpenetration or zipping 
of chains of linear polymers. The approach presented here may serve as a starting point 
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Figure 3. Variation of (us as a function off for ZD Siespinski gasket. 

for more thorough investigations of segregation and entanglements in real systems by 
considering all physically relevant interchain and intrachain interactions. 

We thank Deepak Dhar for many useful discussions on the subject, and the Department 
of Science and Technology (New Delhi) for financial assistance. 
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